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Feynman Path Integral and Ordering Rules 
on Discrete Finite Space 

G .  C h a d z i t a s k o s  1 and J .  T o l a r  2 

Received February 14, 1992 

The Feynman path integral is constructed for systems whose configuration space 
is a discrete finite set. The construction is based on the operator formulation of 
quantum mechanics on a finite discrete space. We derive connections between 
operators and introduce the analogue of the *-multiplication for discrete symbols. 

1. INTRODUCTION 

The two most frequently used formulations of quantum mechanics are 
the operator formalism on a Hilbert space and the Feynman path integral 
(Feynman and Hibbs, 1955). The ambiguity of ordering operator products 
corresponds to the ambiguity of choosing points from each interval in which 
the action is evaluated (Dowker, 1976; Bertrand and Irac, 1979; Berezin, 
1980). The formulation of  finite-dimensional quantum mechanics has been 
made in several papers (Gudder and Naroditski, 1980; gtovi~ek and Tolar, 
1984; Santhanam, 1977; Balian and ltzykson, 1986). Moreover, in Pearle 
(1973) and Stovi~ek (1980) the Feynman path integral was established, but 
only for the Rivier ordering rule. In the present paper we present the Feyn- 
man path integral and the corresponding Weyl formulation of a discrete 
quantum mechanics for other possible symmetrizations. 

2. QUANTUM MECHANICS ON DISCRETE FINITE SPACE 

For  the sake of simplicity we shall restrict our attention to one classical 
degree of freedom. Theories for more degrees of  freedom can be obtained 
as a tensor product of  theories of one degree. 
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Let q(i) take one of M discrete values {qi}, i = 0, 1 . . . . .  M -  1. With 
each value of qi we can connect a vector Ii) of an orthonormal basis of M- 
dimensional Hilbert space ~ .  Let T be the corresponding map, 7": q+ ~ Ii). 
Then we define a position operator (Gudder and Naroditski, 1980; gt'ovi~ek 
and Tolar, 1984) 

M - - I  

O = 2 / i />< / I  
/ - 0  

The eigenvectors of Q form a basis of the Hilbert space ~, ,  {1i}}, and i are 
the corresponding eigenvalues. We have (I J})+= 8i,/in this basis. 

In order to obtain momentum operators, we close the set {i} into the 
periodic chain, i.e., we get the conditions 

I J} = [J + M} 

and introduce unitary transitionoperators. The one-step transition operator 
will transform the vectors l j ) ,  U(1):[j)F-~Ij+ 1 ), modulo M, or in matrix 
form, 

/0 1 0 0 . . .  0\  

) 0 0 1 0 . . .  0 

5 0 ) =  0 0 0 l . . .  0 

0 0 0 0 . - .  1 

tl 0 0 0 . . .  0 

The powers of U(1) generate cyclic matrices U'(k)=(U(I)) ~, U(k)[j}= 
[ j+k},  and (U(1))M=Id. They provide the regular representation of the 
cyclic group CM in the ~, .  

Let us now define a momentum operator P with eigenvalues pc 
and eigenvectors IP~} in a similar way as in continuous case (Gudder and 
Naroditski, 1980), i.e., as a generator of a one-parameter group of unitary 
transformations 

Since Q has a discrete spectrum of eigenvalues, d has to satisfy the conditions 

V(d)[j} = [ j+m} for all j (mod  M) (1) 

and will depend on m = 0, 1 . . . . .  M -  1. Using the resolutions of the identity 
M - I  ? , 4 - 1  

Id=  Z IPk}(P~I, Id=  Z ["}(rl 
k = O  r - O  
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t0 k ~ k .  

Hence 

we get 

V(d)lj> = Y~ e-edPklPk>(Pk IJ > = 2 2 e ~dP~lr ) (rlpk> (pk IJ ) 
Pk Pk r 

and from the conditions (1) it follows that 

Z e-edP~< r IPk><Pk I J> = 6r , j+m 
Pk 

But &,j+,,~ can be expressed as 

1 M - - I  gr,j+,,,=~ ~ e (2~ri/M)k(" j - , , , )  

k=0 
Comparing the last two equations, after separation of r- and pk-dependent 
factors, one can identify 

| e(2Jri/M)kr d=2~rm' M <rlPk> = ~  (2) 

Denoting eigenvectors of/3 by Ik>, where k = 0 , . . . ,  M -  1, we get from (2) 

Ik ) ~- ~ M  ~ e~2~i/ M)kJlj ) (3) 

Equation (3) describes a discrete Fourier transformation of the eigen- 
vectors I J>- Matrix elements of the operator/3 in the basis of eigenvectors 
of 0 are 

__1 ~ k e (2 'r i /M)k( ' ' -n)  --  ~�89 1) if m =n 
(m[/3ln)=M k -~(e(2~i'/~~ l)- '  + M -I otherwise 

and the matrix elements of the commutator are 

(ml[{), ~3]In) = (m - n)(ml/31n> 
Although the commutation relations are different from the continuous 

case, the Weyl relations do hold in the discrete case (Gudder and Naroditski, 
1980) : 

e C2~i/M~'O eC2~'/M)'~lj) = e~2~e/M)'OIj- s) 
= e(2Jri/M~'(J-s) l j  - S> 

= e-(2Jri/M) ts e(2~ri/M)sT" e(2;ri/M)~/Ij > 

= e-~2~/M~,, e~2~/M),i" e(2~/M),Otj ) 
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Hence the Heisenberg uncertainty principle holds in the following weaker 
sense: 

I f  the system is in the eigenstaJe l J) of  the operator Q, then the probability 
of  measuring each eigenvalue of  P is the same. 

Let the system be in the state I J) ;  then the probability of finding the 
system in an eigenstate Ik) of/3 is 

1 
I(Jlk)[ z = (Jl k ) f k  l J)  = - -  

M 

The reversible time evolution of any isolated quantum system is deter- 
mined by a strongly continuous one-parameter group L(t) of unitary opera- 
tors acting in a Hilber.t space. According to Stone's theorem, there exists a 
self-adjoint operator H, the Hamiltonian, such that 

L( t) = e - i f I '  

3. THE SYMBOLS AND THE ORDERING RULES 

Let us assume now that the Hamiltonian/~ is expressible as a general 
function ~(/3, ~)) of the operators/3 and Q. The problem of symmetrization 
in the discrete case is different from this problem in the continuous case. 
Due to the commutation relations, it is not possible to separate/3- and ~)- 
dependent factors in 

e( 2rci/ M)(k~' + mQ) 

However, we can try to formulate a discrete analogue of the Weyl Wigner 
ge~rM correspondence rule in a continuous space. With every operator 
H(P, Q) we associate a real matrix hp.q--its symbol--on the discrete phase 
space CM x CM : 

X e (2rH/M)mO e (2r:i/M)kp e -(2r:i/M)(kp+mq)~e h 
j~, , , ,  p,q (4) 

The complex matrix fk,,,, is restricted by two conditions: 

(a) In order for Q to have the symbol q and/3 the symbolp,fk,o=fo,,, = 
1 must hold. 

(b) Since the operator H has to be Hermitian, we demand f~,,,,= 
+ 

f ~ l  - k, ;1l  - k " 
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A ^ ^ 

We can express matrix elements of H ( P ,  Q) in the basis {l J)},  

(rt/)(?, O)ls> = Z (,-Ihll) (/I ~) 
/ 

x e (2~ri/M)[m(r- q) + k( l -p)  + I ( r -  s)]r h 
j~, , , ,  p,q (5) 

and perform the summations over 1 and k to get 

(,.]~(/3, {))Is) =Ml~2 ~" Z C~.s;p,qhp,q (6) 
p q 

where 

Cr, s ;p,q : E e(2rci/ M)[p(r - s) + ( ,n/2)(r + s - 2q)~s _ ,',m 

m 

In analogy with the continuous case, we can introduce symmetrizations 
according to Table I. 

Let us now separate the real and the imaginary parts of matrix elements 
(r[/~([ ' ,  Q)ls); g ,~  denotes the real part if r>_s and the imaginary part if 
r<s .  Equation (6) is transformed into M 2 linear equations with M 2 real 
variables 

R=A_ 2 H~,, M 2  P,q Cr,Rs;p.qhp,q 

R M 2 - If the rank of  Cr,s;p,q is n, then this equation has solutions only for the 
operators which are restricted to satisfy n conditions, and we get n free 
parameters in hpq. When an inverse matrix of R . C,.~:r, q exists (i.e., its rank is 
M2) ,  we can associate the multiplication of operators 

H = D G  

T a b l e  1 

S y m m e t r i z a t i o n  f,.~ 

W e y l - M c C o y  1 

B o r n  J o r d a n  {s in[(~c/M)rs]} / (zr /M)rs  

R i v i e r  cosOr / M )rs 
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with the , -product  of  symbols 

h - 1 
p,q - - - - ~  Cr,-Is;p.qCr,t;k, l  C t , s ; , , , . . d k j g  ..... = (d*g)p,q 

which is the analogue of  the , -product  in the continuous case. Some trans- 
formation matrices and values of  determinants for low values of  M and for 
different orderings are shown in the Appendix. 

4. T H E  FEYNMAN P A T H  I N T E G R A L  IN A D I S C R E T E  SPACE 

Let us derive the Feynman path integral in a discrete space, following 
the continuous case as closely as possible. Let ]q't') and lqot0) be the state 
vectors of  the final state and of the initial state at times t' and to. We are 
looking for the transition amplitude between these two states. With the 
time interval t ' -  to divided into N intervals of  duration c= ( t ' -  to)/N, the 
transition amplitude is 

(q' t'lqoto) = ( q'l e-(i/~)&"- '~ = f , "  " " 
ql qN I 

x (q'[ e-(i/tOh~lq N_ J)(qN-I1 e-(i/~)f~elqN-2) 

• (qN-zl " " " [q~)(ql[ e-ti/~)f~lqo) 

where qk = q(to + ke). Each factor on the right-hand side can be expressed to 
first order in 

- i 
(qk+l I e-"/~)n~lqk) = (q~+ t I qk) - ~ e(qk+ i I/t[qk) 

By using the resolution of  the identity 

M - - I  

Id= • [Pk)(Pkl 
pk = 0 

it is easy to show that 

M - I  ^ 

(qk+ll e-(i/~)H~lqk)= ~ (qk+, IPk)(P~lqk) 
Pk = 0 

i 1 
- - - -  E Z Z e(2rci /M)p(qk '  1-qk) 

• e (2rc i /M)j ( (qk  4 1 + qk)/2-- q)le . h  
Jqk--qk+l, ,]  p.q 
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Writing p~ for p in the second sum and using (2), we get to first order in e 

(qk + ~l e-U/n)h~lqk) = 1 ~ e ( 2 z i / M ) p , ( q u +  ' _ ql~-) 

Pk 

I i 1 e f 2 n . i / M ) j ( ( q k + i + q k ) , / 2 _ q ) / .  h ] x 1 - - s - -  V V  h M q ~  d q k - - q k 4 l , . /  p~,qj 

_ IM~ e(2m/M)pk(q*+'-q*)[ 1 --hi Sh'(P~' qk+t, qk)] 
Pk 

where 

.~ __  I ,if, ~ ~ ( 2 t r i / M ) j ( q k  ~ " I + q k - -  2 q ) / 2 r  " 
h ' (pk ,  qk § 1, ,tk~ - - ~  Z. 2.. ~ J qk- q*~, .J he,.. 

- ~ * q j  

Since for small e we can write 

_ ( i / h ) ~ i r  N __  I " ~  . ( 2 z i /  M)pk (q ,~  4 f - qk )  - ( i / ~ )  e h ' ( p k , q k  + I ,qk)  

M pk 

the final form of transition amplitude is 

(q ' t ']qoto)  = 
1 

N ~ e ~  ~ P N - 1  PO k 

• e ( 2 z i / M ) P ~ - ( q k  ~ I - q~-) - ( i / f i ) c h ' f P l -  ,qk  + I *qk) (7) 

In order to establish the Feynman s u m  on discrete phase space, we 
start with the Feynman prescription to calculate the transition amplitude 
(Feynman and Hibbs, 1955) 

(q't ' lqoto) = K(q't ' ,  qoto) = ~ A e (i/s)s[x")l 

where the sum is over all paths, A is the normalization constant, and S[x ( t ) ]  
the action. This is evaluated in the continuous space by means of time 
interval discretization, 

x exp ~ pk(qk+ J -- qk exp -- H ( p ( t ) ,  q( t) ,  t) dt 
k = O  k 
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Using the mean-value theorem, we can write the time integral as 

f H(p( t ) ,  q(t), t) = eH'(pk ,  qk+ 1 ,  qk) dt 

where e = tk+ ~ -- tk and H '  is H evaluated at any point q from the interval 
q~ + l >- q >- qk (Berezin, 1980). In discrete space we have sums over all possible 
values of  coordinates and momenta instead of the integrals in continuous 
space, i.e., 

Ku(q ' t ' ,qo to)=B u - '  Z "" " Z Z " ' '  Z 
q N -  | q l  P N -  t PO 

x exp [Pk(qk + J -- qk) -- eH' (pk ,  qk+ l, qk)] (8) 
k = 0  

Comparing this equation for the transition amplitude with equation 
(7), which we obtained from the operator formulation, and after proper 
redefinition o f p  and q, we see that the matrix h'(pk, qk+L, q~) is a discrete 
Hamiltonian if and only if it is real. This is true only for the discrete Rivier 
symmetrization, which gives 

h'( pk, qk + I, q~) = �89 ( hpk ,qk + hp~,q~ +, ) 

If one uses the discrete analogue of Weyl-McCoy or Born-Jordan symmetri- 
zation, then a complex matrix h'(pk, qk+l, qk) is obtained. We give h' for 
both these symmetrizations in the case M =  2: 

For Weyl-McCoy,  f . ,  = 1 and 

h'(p, 0, 0) = h,,o, h'(p, 1, 1) =h,,i  

h'(p, l, 0) =l[hp.0(1 + i) +hp,,(l - i ) ] = h ' ( p ,  O, 1) 

For Born Jordan, fr,~ = {s in[( ,v /m)~:~]} /ur /m)rs  and 

h'(p, 0, 0)=hp.0, h'(p, 1, 1) =hp.~ 

h'(p, l ,  O)=hp.o(l + ~ ) +  hp.,(l  + ~ ) = h ' ( p ,  O, 1) 

5. C O N C L U S I O N  

The problem of operator symmetrization and the corresponding ambig- 
uity of quantization can be approached in two main ways: (i) in the operator 
formalism of quantum mechanics, and (ii) via the Feynman path integral. 
In this paper we analyzed the transition amplitude from these points of view 
and compared the resulting expressions (7), (8). 



Feynman Path Integral on Discrete Finite Space 525 

APPENDIX 

Matrices C R for M =  2 and M =  3. r,s;p,q 
For M =  2 and fr,s = 1: 

2.000 0.000 2.000 
CR = ~0.000 0.000 0.000 

r,s;p,q ~1.000 1.000 --1,000 

\0.000 2.000 0.000 

For M = 2 and f . ,  = c o s ( z r / M ) r s :  

2.000 0.000 2.000 
CR =~1"000 --1.000 -1.000 

r,s;p,q ~ |  .000 1.000 - 1 . 0 0 0  

\0.000 2 .000  0.000 

For M = 2  andfi ,~= { s i n [ ( J r / M ) r s ] } / ( r c / M ) r s :  

2.000 0.000 2.000 
n /0.637 -0.637 -0.637 

Cr's;P'q= ~ I . 0 0 0  1.000 - 1 , 0 0 0  

\0.000 2.000 0.000 

For M = 3 and f.,s = 1 : 
3.00 0.00 0.00 3.00 0.00 0.00 

[1.73 -1.73 0.00 -1.73 0.00 -0.87 

/ 0 . 0 0  0.00 0.00 0.00 2.60 0.00 

/ 1 . 0 0  1.00 1.00 -2.00 1.00 -0.50 

CR~:p,q =[0,00 3.00 0.00 0.00 3.00 0.00 

~ 0.00 1,73 -1.73 -0.87 -1.73 0,00 

~ 0.00 3.00 0.00 0.00 - 1.50 0.00 

1.00 

\3.00 

0.000\ 
0.000|  

-1 .000]  
2.000/ 

0.000\ 
1.000/ 

-1 .000]  
2.000/ 

0.000\ 
0.637 / 

- 1.000 / 
2.000/ 

1.00 1.00 -0.50 -2.00 1.00 -0.50 

0.00 0.00 3.00 0.00 0.00 3.00 

For M = 3  a n d f i , , = c o s ( z / M ) r s :  

03.00 0.00 0,00 3.00 0.00 0.00 3.00 0.00 0.00t 

.00 0.00 0.00 -1.30 -1.30 0.00 1.30 1.30 0.00 

0.00 0.00 0.00 1.30 0.00 1.30 -1.30 0.00 -1.30 

1.50 1.50 0.00 -0.75 -0.75 0.00 =:0.75 -0.75 0.00 

CRr~:p,q= 0.00 3.00 0.00 0.00 3.00 0.00 0.00 3.00 0.00 

0.00 0.00 0.00 0.00 -1,30 -1.30 0.00 1.30 1.30 

1.50 0.00 1.50 -0.75 0.00 -0.75 -0.75 0.00 0.75 

0.00 1.50 1.50 0.0 --0.75 -0.75 0.00 --0.75 --0.75 

3.00 0.00 0.00 3.00 0.00 0.00 3.00 0.00 0.00 

3.00 0.00 0.00\  

0.00 1.73 0.87~ 

0.00 -2.60 0.00 

1.00 -2.00 -0.50 

0.00 3.00 0.00 

0.87 0.00 1.73 

0.00 - 1.50 0.00 

1.00 -2.00 

0.00 0.00 
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F o r  M = 3 a n d  f . ,  = { sin[(Jr/M)rs]}/Qr/M)rs: 

C~:~ q = 

'3.00 0.00 0.00 3.00 0.00 0.00 3.00 0.00 0.00' 

1.07 -1 .07  0.00 -1 .58  -0.51 -0.51 0.51 1.58 0.51 

0.54 0.00 -0 .54  0.51 1.05 1.05 -1 .05  -1 .05  -0 .51 

1.21 1.21 0.59 -1 .53  0.33 -0 .29  0.33 -1 .53  -0 .29  

0.00 3.00 0.00 0.00 3.00 0.00 0.00 3.00 0.00 

0.00 1.07 -1 .07  -0.51 - t . 5 8  -0.51 0.51 0.5t 1.58 

0.90 1.21 0.90 -0 .02  -0 .60  -0.91 -0 .91 -0 .60  0.02 

0.59 1.21 1.21 -0 .29  -1 .53 0.33 -0 .29  0,33 -1 .53  

0.00 0.00 3.00 0.00 0.00 3.00 0.00 0.00 3.00 

D e t e r m i n a n t s  o f  C R m a t r i c e s  fo r  M = 2-11 r , s ;p ,q  

F o r  f~., = 1 : 

M = 2 D E T :  

M =  3 D E T :  

M =  4 D E T :  

M =  5 D E T :  

M = 6 D E T :  

M = 7 D E T :  

M = 8 D E T :  

M = 9 D E T :  

M = 10 D E T :  

M = 11 D E T :  

32 

- 3 . 8 3 5 3 . 4 5 0 5 5 1 0 5 0 5 8  

- 3 . 3 8 8 1 3 1 7 8 9 0 1 7 2 2 1 E -  021 

2 . 8 3 3 3 4 4 2 4 0 0 7 3 2 4 1 E + 0 1 8  

- 1 . 3 1 0 0 0 4 7 6 7 7 1 4 6 3 7 E -  051 

- 1 . 7 2 5 8 2 9 2 5 6 4 5 0 2 5 8 E +  042 

- 7 . 1 4 6 4 7 4 6 6 4 7 8 3 7 0 8 E - 1 1 0  

3 . 3 4 2 8 7 8 3 5 2 4 5 0 0 5 1 E + 0 7 5  

- 2 . 0 2 4 6 6 5 3 9 1 6 6 5 9 7 7 E +  024 

8 . 0 8 6 0 9 5 4 4 7 6 0 1 3 4 2 E +  162 

F o r  fr,s = cos(lr/M)rs: 

M = 2 D E T :  

M = 3 D E T :  

M = 4  D E T :  

M = 5 D E T :  

M =  6 D E T :  

M = 7 D E T :  

M = 8 D E T :  

M = 9 D E T :  

M =  10 D E T :  

M =  11 D E T :  

0 

- 2 1 5 7 3 . 8 1 5 9 3 4 9 6 5 8 9  

0 

2 . 4 2 4 3 4 9 7 5 9 0 3 0 5 3 8 E + 0 1 8  

7 . 1 7 4 8 0 5 4 5 0 3 5 4 1 3 9 E - 0 4 1  

- 9 . 0 3 6 4 1 5 4 2 4 3 3 2 0 3 2 E + 0 4 4  

0 

1 . 1 0 0 4 8 8 0 0 4 7 5 7 9 4 4 E + 0 8 7  

- 1 . 9 8 5 8 4 1 3 9 2 1 8 0 7 5 7 E +  110 

5 . 7 0 4 7 1 3 0 5 4 7 9 0 7 7 7 E +  150 
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F o r  f~,, = { s in [ (Tc /M)rs ]  } / ( z c / M ) r s :  

M = 2 D E T :  

M = 3 D E T :  

M = 4 D E T :  

M = 5 D E T :  

M = 6 D E T :  

M = 7 D E T :  

M = 8 D E T :  

M = 9 D E T :  

M =  10 D E T :  

M = 11 D E T  : 

20.372832715 

- 2 2 7 0 4 . 7 9 2 7 5 3  

2 . 8 1 2 1 8 2 9 0 1 6 2 E - 0 0 7  

1 . 6 1 1 2 7 0 9 7 2 4 2 E + 0 1 6  

- 2 . 4 5 8 5 0 9 9 5 7 0 3 E - 0 3 2  

- 2 . 0 6 2 5 3 7 8 2 9 7 0 E + 0 3 6  

1 . 3 0 2 1 5 1 4 0 5 0 1 E - 0 2 5  

2 . 3 4 9 6 5 3 8 0 0 2 2 E + 0 0 9 E  

- 2 . 5 5 5 5 8 9 4 5 6 9 7 E + 0 8 2  

7 . 1 5 0 8 1 8 3 1 4 8 4 E +  115 
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